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Introduction

e Stringent operational requirements introduce
Complexity
Nonlinearity
Uncertainty

e C(Classica/neura synthesis of control systems

A-priori knowledge
Adaptive neural networks

* On-line adaptation takes place during every time interval:

Action network takes immediate control action

Critic network estimates projected cost



Full Envelope Aircraft Control

Multiphase learning
Initialization: match linear controllers exactly off-line
. full-scale ssimulations, testing, or operation

On-line training improves performance w.r.t. linear controllers:
Differences between actual and assumed models
Nonlinear effects not captured in linearizations

Algebraically constrained on-line adaptation:
Preserve linear control knowledge

Potential applications:

Incorporate pilot's knowledge into controller a-priori
Uninhabited air vehicles control

Aerobatic flight control



Motivation for Neural Network-Based Controller

Neural Networks for control: coping with complexity

Learning

Flexiblelogic

Applicability to nonlinear systems
Applicability to multi-variable systems

Parallel distributed processing and hardware implementation
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Aircraft Control Design Approach
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Linear Control Design

Linearizations:
x(r) = f[x(r), u(e), p(r)]
g

Ax(¢t) = FAx(t) + GAu(r)
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Proportional Integral Linear Control Law

Quadratic cost function to be minimized:
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Minimizing Linear Control Law:

i(r) = ~Cx, (1) = =CpX(r) - C&(¢) = Dup () + Au, (1)



Linear Proportional-Integral Controller

Closed-loop stebility: x - x., u - u,, y -0
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Omitting A's, for smplicity:
x(t)=x(t)-x(c), @(c)=u(r)-u(c)..., y. = desired output, (x,,u,) = set point.



Proportional-Integral Neural Network Controller
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. Algebraic Initialization, ’: On-line Training.



One-hidden Layer Sigmoidal Neural Network

|nput-to-node
Output: z = NN(p) variable

Input: p
Adjustable parameters:
W,d, v

Output equations:
z=vI o[Wp + d]

Gradient equations:
aZ S zanl

P s - Hidden nodes
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Feedback (Action) Neural Network Initialization

From the Proportional-Integral optimal control law:
e Aug|x(t)]=-Czx(t) - Augzl0]=0

0Au g (t)
0x(z)
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Feedback Neural Network Initialization Requirements:

Accounts for regulation, z, = NN (X, a). For each operating point, £,

(R1) zg (onxl,ak): 0
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General Form of Initialization Requirements

Data set: {y5, 0, ¢}e=1...» Known neural network..
' » Gradient
» Output
» Input

( k
=0 k
Specifications: aZZ&y g . , Where yk = {Xk} :[ (ﬂ

Output and Gradient Nonlinear
Transcendental

Initialization Equations:
0=vlo[WyF+

(N = WT{v (oo Wyt +d]}, k=1, ..., p



Algebraic Initialization Principles

If all input-to-node values are assumed known:
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Algebraic Initialization Example: 2-nodes NNy

Data Set:
Op. Point A B
xk 0 0
ak 8 10
uk 0 0
ck = (ou/ok)* | 15 -8

Algebraic Solution:
Pick any input-to-node values, n 4, n,4, n,2, and n,?
uA =v,an?) +v,an,r), uB=v anpB +v,an,B) - v,v,
cA=v, w, 0 +v,w, adn?), cB=v,w, anB+v,w, dnB) - w,,w,
nA=wy XA+ w, XA +d, nB=w xB+w,xB+d, - wp,,d

A— A A B — B B
NA =Wy XA +W,, XA +d,, nyB=wy X B+w, X,B+d, - w,,,d,



Joining Two Initialized Longitudinal and Lateral
Neural Networks

Initialized Networks:




Proportional-Integral Neural Network Controller:
On-line Action and Critic Networks Implementation
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Action/Critic Network On-line Learning, at Time ¢
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Each network must meet its target, subject to Initialization Requirements (IR)
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" E = Network performance
Output
—> < € = Network error
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Algebraically Constrained On-line Learning Algorithm

= At timet, the Constrained Resilient Backpropagation (CRProp)
algorithm minimizes E, computing the weightsto be used at (¢ + 1):
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WhereK,;, K5, K,;, and K, are known, constant matrices



Resilient Backpropagation Algorithm

The size and direction of each weight's increment, Aw'), are based on
the sign of the gradient of the performance, £, w.r.t. the weight, w

Increment Direction:
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Summary and Conclusions
ODbjectives:
|mprove performance under unforeseen conditions
Preserve initialization control knowledge during on-line learning

Achievements:

Systematic approach for designing adaptive systems
Guaranteed fulfillment of adaptation constraints

Innovative algebraic framework for neural network learning

Successful implementation of an adaptive critic approach for flight control:
< Algebraic initialization

\J

< On-line training by a Resilient Backpropagation algorithm

Other On-line Network-Control Applications:

Process control, air-traffic management, reconfiguring hardware (raw chips),

anomaly detection, criminal profiling, image processing, ...



